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Abstract

This paper reviews the importance of numerical drag
prediction in an aircraft design environment� A
chronicle of collaborations between the authors and
colleagues is discussed� This retrospective provides
a road�map which illustrates some of the actions
taken in the past seven years in pursuit of accu�
rate drag prediction� The advances made possible
through these collaborations have changed the man�
ner in which business is conducted during the design
of all�new aircraft�

The subject of this study is the DLR�F

wing�body transonic model� Speci�cally� the work
conducted herein was in support of the 
st CFD Drag
Prediction Workshop� which was held in conjunction
with the 
�th Applied Aerodynamics Conference in
Anaheim� CA during June� ���
�

Comprehensive sets of OVERFLOW simulations
were independently performed by several users on
a variety of computational platforms� CFL�D was
used on a limited basis for additional comparison on
the same overset mesh� Drag polars based on this
database were constructed with a CFD�to�Test cor�
rection applied and compared with test data from
three facilities� These comparisons show that the
predicted drag polars fall inside the scatter band of
the test data� at least for pre�bu�et conditions� This
places the corrected drag levels within 
� of the
averaged experimental values� At the design point�
the OVERFLOW and CFL�D drag predictions are
within 
��� of each other� In addition� drag�rise
characteristics and a boundary of drag�divergence
Mach number are presented�
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Nomenclature

AR Wing Aspect Ratio � b�

Sref

a Acoustic Speed

b Wing Span

CD Drag Coe�cient � Drag
q�Sref

CL Lift Coe�cient � Lift
q�Sref

Cref Wing Reference Chord

count Drag Coe�cient Unit � ������

D Drag

DPW Drag Prediction Workshop

e Oswald�s E�ciency Factor

L Lift

M Mach Number

RANS Reynolds�Averaged Navier�Stokes

Ren Reynolds number �
�� V� Cref

��
Sref Wing Reference Area

SFC Speci�c Fuel Consumption

W Weight

Y � Wall Distance �
�w u y
�w

q Dynamic Pressure � �

�
�V �

� Angle of Attack

�c�� Wing Quarter�Chord Sweep

� Signi�es Freestream Conditions

� Introduction

In re�ection� as the 
���year anniversary of �ight
draws near� it is truly amazing just how far the in�
dustry has progressed� This rapid advance in the
science� technology� and business of �ight was made
possible through a blend of competition and coop�
eration between industry rivals� government agen�
cies� and academic institutions around the world� It
is in this spirit that the Drag Prediction Workshop
�DPW� was conducted �
������ Participants from six
nations came together for a common goal � to assess
the state�of�the�art of drag prediction using Compu�
tational Fluid Dynamics �CFD� methods based on
the Reynolds�Averaged Navier�Stokes �RANS� equa�
tions�
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Why is drag prediction so important to the indus�
try of �ight� In short� drag represents the irrecov�
erable aerodynamic losses associated with a �ight�
based mission� For example� consider the generic
task of delivering a payload between distant city
pairs� The Breguet�Range equation� which aptly ap�
plies to long�range missions of jet aircraft� is�

Range �
ML

D

a

SFC
ln

�
W� �Wf

W�

�
� �
�

Here� M is the cruise Mach number� L � D are the
aerodynamic forces of lift and drag� respectively� a
is the acoustic speed� SFC is the speci�c fuel con�
sumption of the engines� W� is the aircraft landing
weight� and Wf is the weight of fuel burned during
the �ight� The Breguet�Range equation illustrates
the importance of drag prediction as a function of
lift and Mach number in the context of aerodynamic
design� it also provides a glimpse into the interplay
between the various disciplines�
Referring to Eqn �
�� one might assume that the

aerodynamic e�ciency of an aircraft is represented
by ML

D
� the propulsion e�ciency is embedded in

SFC� and that the structural e�ciency directly im�
pacts W�� Interestingly� historical trends of in�
service transport aircraft indicate that very little im�
provement in the ML

D
metric has been accomplished

in the past �� years� Yet it would be somewhat
naive to state that no aerodynamic advances have
been made during this period� In actuality� improve�
ments in aerodynamics have better served aircraft
designs by trading them for improvements in other
disciplines� For example� the ability to increase the
thickness�to�chord ratio of a wing while maintain�
ing ML

D
not only reduces the structural weight of

the wing� it also provides additional fuel volume�
In terms of Eqn �
�� an aerodynamic improvement
of this nature would manifest itself as a decrease in
W� and an increase in Wf with the net result being
an increase in range� Reducing the aircraft�s empty
weight has the added bene�t of reducing the cost of
the vehicle� Obviously� this aerodynamic improve�
ment would not be apparent in the trend charts of
ML
D

�
Assume that an airline would like to provide a ser�

vice between two cities with an aircraft that� when
fully loaded with payload and fuel� is 
� short on
range� Since the aircraft is fuel�volume limited� the
only recourse is to reduce the payload weight� In
relative terms� a typical ratio of weights might have
Wf � �

�
W� and Wpayload � �

�
W�� In this scenario�

Eqn �
� shows that the operator would have to re�
duce the payload �read revenue� by ��	� to recover
the 
� shortfall on range� Since most airlines op�
erate on very small margins� this service most likely
will no longer be a pro�t�generating venture� This

example illustrates that in the current business of
�ight� a 
� delta in aircraft performance is a sig�
ni�cant change� While improving an aircraft�s per�
formance by 
� may not be a trivial task given the
usual constraints� losing �� is easily done if attention
is not paid to detail �e�g�� juncture �ows� external
doublers� gaps� etc���

Now consider a more typical case where the air�
craft does not su�er from a shortfall on range� In
round numbers� the Direct Operating Costs �DOC�
of a transport aircraft can be itemized as� ��� for
the cost of ownership� ��� for fuel burn� ��� for
crew salaries and maintanence� and 
�� for miscel�
laneous other items� From an airline�s perspective� if
the DOC of its �eet of aircraft could be reduced by
�� with a new design �while providing the same set
of services to its customers�� the airline would most
likely retire its entire �eet and replace it with the
new aircraft ����
So how can aerodynamics be leveraged to im�

prove the economics associated with a �ight�based
mission� A simpli�ed high�lift�system design that
retains L

D
and CL max reduces manufacturing and

maintanence costs as well as part count� Increas�
ing the cruise Mach number without reducing ML

D

reduces the time�dependent costs such as crew and
maintanence� And the classic� increasing ML

D
with�

out penalizing the other disciplines reduces fuel burn�
These are just a few examples of how aerodynamic
advances can have an impact on DOC� � � and all of
these require accurate drag predictions�
To push aerodynamic technologies forward� it is

becoming more important that accurate drag predic�
tion become a consistent product of the CFD com�
munity� Once this prerequisite is accomplished� the
full bene�ts of automated aerodynamic shape opti�
mization may begin to be realized�
With the various on�going design programs� these

are exciting times for the aircraft industry� A prime
example is the Blended�Wing�Body �BWB� which
has established a renaissance in the design of a family
of all�new aircraft �
�� This revolutionary concept is
enabling aerodynamic advances in all of the above
areas� and then some� It presents challenges� yet
o�ers signi�cant opportunities� and as a result� a ��
reduction in DOC is within grasp� Su�ce it to say
that aerodynamics is not a sunset technology� but
rather� it is as important today as it was a century
ago� only the stakes have changed�

� Background

The �rst and second authors embarked on a collab�
orative e�ort which began in late 
��
� Speci�cally�
this study was to determine what was required to
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obtain accurate drag results from the OVERFLOW
code ���� At that time� a typical simulation for a
commercial transport con�guration yielded a drag
error of about 
�� counts� where the total drag of
the aircraft was nominally ��� counts� Results for
the High�Speed Research �HSR� platforms were even
worse� computed drag values were occasionally neg�
ative� Clearly� that state�of�the�art was quite unac�
ceptable� In fact� there were prominent members of
the aerodynamics community at large who felt that
accurate drag predictions from RANS�based CFD
methods might never be accomplished� Nonetheless�
a systematic study of gridding guidelines proved to
be the key� and by mid 
��� the errors in computed
absolute drag values for pre�bu�et cruise conditions
approached the 
��� level� This collaboration� along
with the NASA Advanced Subsonic Transport �AST�
Program cooperative work with �then� McDonnell
Douglas Aerospace�West �	�� was the catalyst for the
development of the ��zone grid system for wing�body
con�gurations with the signature collar grid at the
wing�body juncture� These gridding guidelines were
used as the basis for the DPW baseline grids� and will
be discussed later in the paper� However� the end re�
sult was that the size of a grid suitable for accurate
drag prediction was nominally 
�� times larger than
that previously used� In addition� the number of iter�
ations required for convergence on drag rather than
pressures also jumped by a factor of ���� depending
on the case� Hence� the cost of OVERFLOW sim�
ulations for drag prediction increased by more than
an order�of�magnitude relative to those used for the
calculation of pressure distributions�

In another collaborative e�ort which began in
early 
���� the �rst two authors agreed that a paral�
lel version of OVERFLOW for distributed process�
ing was in order� The original parallel code was
based on the Parallel Virtual Machine �PVM�� and
more recently� has been ported to use the Message�
Passing Interface �MPI� ���� For more than �ve
years� the Aerodynamic Design group in Long Beach�
CA has almost exclusively used a parallel version of
OVERFLOW on distributed clusters for production
overset�grid CFD simulations� A parallel�processing
capability such as this was necessary for accurate
CFD drag predictions to be economically feasible
in an aircraft design environment ���� Turn�around
time was further improved with the addition of grid
sequencing and full multigrid to accelerate solution
convergence ����

The combination of the above two collaborations
had an immediate impact on the B�
����� design
�previously called the MD����� Here� several aerody�
namic fairing designs for various juncture �ows were
evaluated using OVERFLOW� In all cases� the pre�
dicted drag increments were later con�rmed to be

extremely accurate in wind�tunnel tests �
��� In one
particular case� a pocket of separated �ow was identi�
�ed in the numerical simulations just prior to a wind�
tunnel entry� This prompted a �ow�visualization
run that con�rmed the separation� Before the test
was over� a �llet for this troublesome region was de�
signed� fabricated with stereolithography� shipped to
the wind tunnel� and tested�
In 
��	� the �rst author invited a team of NASA

personnel from the Ames and Langley Research Cen�
ters to participate in the aerodynamic design of the
MD�XX trijet aircraft� The NASA group worked on�
site and fully integrated within the MD�XX team�
Due to the successes of CFD drag prediction on the
MD��� program� the MD�XX Design O�ce elevated
the role and importance of CFD in the design envi�
ronment� They did so by scheduling the freeze of the
�nal loft lines of the cruise geometry several months
prior to the �rst wind�tunnel test entry which would
verify the aircraft�s aerodynamic performance� Al�
though this program was later cancelled� it marked
a dramatic change in the manner in which business is
conducted in the design of an all�new aircraft� This
philosophy lives on today in advanced programs such
as the Blended�Wing�Body �
�� �

��
The lessons learned in the above e�orts have been

augmented with subsequent studies on drag pre�
diction conducted under various programs and ex�
tended to other CFD methods such as CFL�D �
���
SYN
�� �
����

�� and TLNS�D �
��� Within Boeing
Phantom Works Long Beach� OVERFLOW remains
the work�horse for complex transport con�gurations�
CFL�D is heavily used on the BWB and re�entry ve�
hicle programs� while SYN
�� and TLNS�D round
out the tool chest by providing aerodynamic shape
optimization capabilities�
Since 
���� while the errors in predicted absolute

drag have stablized� the complexity of the con�gura�
tions being analyzed has consistently increased� To�
day� the size of an overset grid system for a complete
B�
��
�� con�guration �comprised of a cruise wing�
fuselage� pylons� �ow�through bifurcated fan and
core cowls� winglets� vertical and horizontal tail com�
ponents� is approximately �� million nodes� Further�
more� these simulations are being performed with the
aircraft trimmed to speci�ed center�of�gravity loca�
tions� After correcting for excrescences� internal cowl
drags� etc�� comparisons with �ight test data have
con�rmed that the numerically predicted absolute
drag values are within the band of uncertainties�
The next challenge for drag prediction is to im�

prove the level of accuracy for post�bu�et cruise con�
ditions as well as for high�lift con�gurations� Im�
proved high�lift drag prediction may become criti�
cal to achieve the pending more�stringent environ�
mental requirements on take�o� and landing noise�
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Unfortunately� current state�of�the�art RANS�based
CFD methods cannot consistently predict accurate
pressures for these �ows� Until this is accomplished�
there is little hope that accurate drag values will be
attained here as well� An accomplishment of this
magnitude will likely be possible only through the
cumulative work of many collaborative e�orts such
as those aforementioned�

The works noted above were conducted by a mul�
titude of individuals� including the authors� under
numerous collaborations between Boeing Phantom
Works Long Beach and the NASA Ames and Lan�
gley Research Centers� A subset of those who were
involved are� Dan Bencze� Bob Biedron� Dick Camp�
bell� William Chan� Roger Clark� Susan Cli�� Mark
DeHaan� Lie�Mine Gea� Robb Gregg� James Hager�
Ray Hicks� Rick Hooker� Dennis Jespersen� Steve
Krist� Steve Mysko� Bob Narducci� Mike Olsen� Rick
Potter� Stuart Rogers� Dino Roman� Tony Sclafani�
Je� Slotnick� Richard Wahls� and Mark Whitlock�

� DLR�F� Geometry

The case chosen for the DPW is the DLR�F

wing�body con�guration �
	�� Several factors were
considered in the decision to use this geometry as
the test�bed for the workshop� One factor was the
availability of test data from multiple wind�tunnel
facilities� Another was that this con�guration is rep�
resentative of current transonic transport aircraft�

The general layout of the DLR�F
 is provided in
Figure 
� This con�guration is typical of a transonic
aircraft designed to cruise at M � ����� The wing
quarter�chord is swept ��� with a leading�edge sweep
of ���
� and an outboard trailing�edge sweep of 
�����
The ��� aspect�ratio wing is rigged with a dihedral
angle of 
���� Its planform is void of a leading�edge
glove� yet includes a yehudi which extends to 
��
semispan� completely unsweeping the trailing edge
of the inboard wing� This planform is representa�
tive of wings that accommodate retractable main
landing gear� The airfoil sections are supercritical
with thickness�to�chord ratios of 

��� at the side�
of�body� reducing to 
���� outboard� The wing trail�
ing edge has a blunt base of ���� local chord� Fig�
ures ��� provide the thickness and camber distribu�
tions� as well as the geometry� for the root and out�
board airfoil sections� respectively� The wind�tunnel
model has a wing semispan of �����mm� a mean
aerodynamic chord of 


��mm� a reference area of


�� 
��mm�� and reference center at x � ��
��mm�
The fuselage length is 
� 
��mm� Its constant bar�
rel section has a diameter of 

��
�mm� which be�
gins at x � ���mm and extends to x � 	�	mm�
No special �llets are incorporated at the wing�body

juncture� yielding a sharp corner everywhere on the
intersection line� The DPW geometry also includes
the aeroelastic twist of the wind�tunnel model under
a loading which corresponds to the nominal cruise
condition of M � ���� and CL � ���� with a dy�
namic pressure of q � 
�� 
�
Pa�

� DPW Overset Grid

The overset mesh generated for the DPW was based
on the original process developed in 
���� The grid
is comprised of � zones� 
 of which conform to the
geometry and three box grids that transition the sys�
tem to the far�eld boundary� The 
 conforming grids
de�ne the volumes next to the fuselage� the wing�
body juncture� the wing� and the wingtip� Two in�
termediate boxes surround the fuselage and wing ge�
ometries� while the remaining far�eld box extends
outward about 
�� reference�chord lengths�
For this exercise� the surface grids were con�

structed using Gridgen�V
� �
�� and are depicted
in Figure 
� These surface grids were then ex�
truded outward using HYPGEN �
�� to generate the

 surface�abutting volume grids� Figure � shows a
close�up of the wingtip grid� Figures 	�� illustrate
the collar grid at the wing�body juncture�
The hole�cutting and fringe�point coupling steps

were performed manually using GMAN �
��� The
overlap and blanking of the meshes near the wing�s
mid�chord are shown in Figure ��
On the wing surface� the chordwise spacing at both

the leading and trailing edges is approximately ��
�
local chord� The trailing�edge base is de�ned with �
evenly�spaced points� The wake is represented with
	� points in the streamwise direction� The spanwise
spacing is about 
� semispan at the root and ��
�
at the tip� On the fuselage nose and after�body� the
maximum grid spacing is nominally �mm� In the
direction normal to the viscous surfaces� the �rst�
layer spacing is about ����
mm� which corresponds
to Y � � 
� Also in this direction� the maximum
growth rate of the grid spacing is 
��
� Figure �
provides an itemization of the individual grid di�
mensions� surface points� total grid points� and non�
blanked real points� The complete grid system is
comprised of �� ��
� ��� real points� with �
� 

� re�
siding on the viscous surfaces�
The guidelines used to generate the DPW overset

mesh purposely omitted two gridding rules� these will
be discussed now for completeness� The �rst is re�
lated to the manner in which OVERFLOW computes
skin�friction drag� For this calculation to be second�
order accurate� the �rst two layers of the grid nor�
mal to viscous walls must be evenly spaced� While
this rule was not strictly enforced� the spacing ra�
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tios of the �rst two layers were fairly close to unity�
The second rule is related to the grid resolution at a
blunt trailing�edge base� Here� it is the �rst author�s
standard practice to include a trailing�edge cap grid
that wraps around the blunt base in a C�clamp fash�
ion� This grid normally has half of the cells on the
base and the remaining cells evenly split between the
upper and lower surfaces� It normally extends about
��
�� upstream of the trailing edge� However� in the
case of the DLR�F
 wing where the gradients near
the trailing edge are relatively benign� inclusion of a
high�resolution cap grid is probably not required for
accurate drag prediction�

One �nal note� After the DPW was held� the
Long Beach Aerodynamic Design group has �nally
transitioned from GMAN to PEGASUS�V� ���� to
provide semi�automatic hole�cutting and fringe�point
coupling capabilities� There were several reasons
for this lag� most were related to drag prediction�
With that being said� the current parallel version of
PEGASUS�V� has proved to be a very useful tool�
and one now appropriate for drag prediction� Fur�
ther� it will continue to improve through the on�going
collaborations within the PEGASUS community�

� Wind�Tunnel Test Data

The DLR�F
 model was tested in three European
facilities� NLR�HST� ONERA�S�MA� and DRA��x��
The repeatability of these facilities was on the order
of �� counts� While the AGARD AR���� report �
	�
presented this data� an unfortunate element of this
documentation was that the drag coe�cients were
only tabulated to three decimal places� Hence� the
archived public�domain data has an e�ective scatter
band of �
� counts�
In an attempt to alleviate the uncertainty in�

troduced by the truncation� the �rst author post�
processed the public�domain data with two �lters�
The �rst data enhancement augmented the drag co�
e�cients with the coe�cients of axial and normal
forces� This process reduced the uncertainty of the
tabulated values from the original � counts� down
to as small as ��� counts� depending on the case�
The second data enhancement was a careful digiti�
zation of the drag polar �gure in the AGARD re�
port� This digitization was also checked to be consis�
tent with the reduced uncertainty bands derived by
the �rst enhancement process� The resulting wind�
tunnel drag polars are provided in Figure 
�� A more
detailed explanation of these �lters can be found in
the Data Enhancement presentation on the DPW
website �
��

The enhanced wind�tunnel test data for M � ����
has been collapsed to a curve� by �tting a limited

range of the data to an equation of the following
form�

CD � CD� �
C�
L

� � e �AR
� ���

Here� CD� and e are the free coe�cients of the curve
�t and the aspect ratio of the DLR�F
 wing is AR �
��
���	�� Including data from all three tests� but
limited to the lifting range of

��� � CL � ����� ���

a least�squares curve �t yields CD� � ���
���� and
e � �����

	� Eqn ��� now becomes�

CD � ���
�����
C�
L

�
������
� �
�

and is applicable for the CL range given in Eqn ����
The curve �t given by Eqn �
� and associated test
data are provided in Figure 

�
Since Case 
 of the DPW exercise is to compute

the drag at M � ����� Ren � �M � and CL � ���� it
might be of interest to apply Eqn �
� to this condi�
tion� which yields�

CD � ���
�����
����

�
������
� ������	� ���

The drag polars presented in the next section use
the enhanced wind�tunnel data� rather than data
taken directly from the AGARD AR���� report�

� Results

Included in this section are comprehensive sets of
OVERFLOW solutions which were performed on the
DPW baseline overset mesh� Also included is a lim�
ited set of data generated by CFL�D on the same
overset mesh for additional comparison� A more
complete set of CFL�D solutions for the DPW base�
line 
�to�
 multiblock mesh is documented by the
third author in Reference ��
��
For the DPW exercise� the authors purposely did

not coordinate with each other in an attempt to
obtain independent results on the DLR�F
 con�g�
uration� In spite of this� the �rst two authors ran
OVERFLOW with essentially the same set of critical
input parameters� Both used central di�erence scalar
dissipation with the Spalart�Allmaras �SA� turbu�
lence model� However� slightly di�erent versions of
OVERFLOWwere run� di�erent computer platforms
were utilized at di�erent levels of precision� and dif�
ferent methods to converge on lift were employed� It
is good to report that these di�erences yielded no no�
ticeable variations in the computed forces� moments
or pressures�
The �rst author ran full convergence on all so�

lutions� starting each solution from a uniform �ow
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at freestream conditions� Full multigrid acceleration
was used with 
�� iterations in both the coarse and
intermediate meshes� and �� ��� iterations in the �ne
mesh� All solutions were run by specifying an angle�
of�attack� even when a speci�c lifting condition was
desired� All computations were performed using 	
�
bit precision� Version 
��m was run in parallel using
MPI on a cluster of 	 Hewlett�Packard C�	
� work�
stations� each with � GB of RAM� and connected
with a switched 
��BaseT ethernet� Each solution
required about 
� hours of wall�clock time� Alpha
sweeps were conducted at 
� Mach numbers� then
these data were interpolated on CL to derive the re�
quired alphas for CLs of ���� ��
� ���� and ��	� In all�
a total of �� OVERFLOW solutions were performed
to obtain drag polars at the 
� Mach numbers� To
de�ne the drag�rise curves� the drag polars were in�
terpolated on C�

L to obtain the corresponding CD

values�
The second author and colleagues ran some cases

with a �xed angle�of�attack and some with a speci�ed
lift�coe�cient� All computations were performed us�
ing ���bit precision� Version 
��s was run in parallel
on three di�erent computer platforms� an SGI Oc�
tane with � processors� an SGI Origin using � proces�
sors� and a cluster of 	 Compaq XP�
��� machines�
Wall�clock timings for these systems were 
��� hours�
��� hours� and 	 hours per 
� ��� �ne�mesh iterations�
respectively�
For a limited set of conditions on the overset mesh�

the third author ran CFL�D with �rd�order upwind
di�erencing with Roe �ux di�erence splitting and us�
ing the SA model� These solutions were converged

� ��� multigrid iterations on the �ne grid only� and
were run by specifying an angle�of�attack� A non�
dedicated SGI Origin was used with one processor�
requiring approximately ��� hours of wall�clock time
per solution�
Figures 
��
� illustrate the OVERFLOW conver�

gence histories of lift and drag� respectively� for a
freestream condition of M � ����� Ren � �M � and
� � �
�� which yields CL � ��
�� and CD � �	���
counts� These forces have essentially converged by
�� ��� iterations on the �ne mesh� Note the scale
on these �gures� lift increments are ����� and drag
increments are a count�
Figures 

�
� provide a similar set of OVER�

FLOW convergence histories� however� these corre�
spond to the cruise lifting condition of CL � ���
with corresponding CD � ����	 counts� Unlike the
previous condition� these forces continue to oscillate
through all �� ��� iterations� albeit at very small am�
plitudes� The cause of these �uctuations is a small
pocket of separated �ow that appears near the trail�
ing edge of the wing�body intersection� see Figure 
	�
Figure 
� provides a comparison of pressure distri�

butions between OVERFLOW and test data at the
cruise design point of M � ���� and CL � ���� Note
that the leading�edge peaks are missed because of
the di�erence in alphas between the numerical sim�
ulation and the tests� Also� the isobars in this �gure
hint to the small pocket of �ow separation on the
upper�surface near the root trailing edge�
An important aspect of comparing results from

OVERFLOW and CFL�D on the overset mesh is to
estimate variation due to choice of CFD code� Fig�
ure 
� shows a comparison of pressure distributions
at M � ���� and � � ��� At this ��matched con�
dition� results are very close and computed leading�
edge peaks better match the test data� The lift� drag
and moment comparisons are provided in Table 
�
Additional documentation on variations due to CFD
method can be found in Reference �����

CL CD �counts� CM

OVERFLOW ����� ����	 ���
	


CFL�D ����� �
��� ���
	��

Table 
� OVERFLOW and CFL�D Comparison at
M � ����� Ren � �M � and � � ���

Case 
 of the DPW asked that all participants
compute a solution for the cruise design point of
M � ����� Ren � �M � and CL � ���� The sec�
ond author and two colleagues independently ran
this case and included solutions with �rd�order Roe
upwind as well� Combined with the �rst author�s
data� these results are provided in Table ��

Alpha �deg� CD �counts� Type

����	� ����	 Central
������ ����� Central
������ ����� Central
�����
 ��	�� Central
����

 ����	 Roe
������ ����� Roe

Table �� DPW Case 
 OVERFLOW Results�

This table shows that the independent assessments
of drag using a consistent di�erencing scheme were
within ���� counts of the average� Correcting for
the variation of CL �which occurs in the 
th decimal
place� collapses the variations in drag to an insignif�
icant number� The variation between central di�er�
encing and Roe upwinding is � � counts� with Roe
yielding the lower drag�
While a CFL�D solution for CL � ��� was not

computed on the overset mesh� Table � contains data
which stradle this condition� and include interpo�
lated values for � �based on CL� and CD �based on
C�
L�� This table shows that the interpolated CFL�D

result yields a drag level approximately ��� counts
higher than OVERFLOW at the design point�
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Alpha �deg� CD �counts� CL

�
���� �		�� ��

	
�����
 ����� �����
����� �
��� �����

Table �� CFL�D Results�

Figure 
� provides the OVERFLOW computed
drag polar for M � ���� and includes the wind�
tunnel data for reference� The data in this �gure are
inconsistent in that the numerical simulations were
performed assuming fully�turbulent �ow� while the
tests allowed laminar runs of ��
�� chord on the
wing�s upper surface and ��� chord on the wing�s
lower surface� Figure �� shows the transitions pat�
tern used in the tests�
To assess the impact on drag caused by this dif�

ference� FLO�� �������
� was used to generate drag
polars of fully�turbulent �ows and �ows tripped with
the pattern of Figure ��� These results are shown
in Figure �
� Also shown in this �gure are least�
squares curve �ts of the polars� When di�erenced�
these curve �ts yield a shift in drag of

CD shift � 
���� ��� �C�
L counts� �	�

Hence at CL � ����

CD shift����� � 
���� ��� � ����

� 
��
 counts� ���

Applying the correction of Eqn �	� to the fully�
turbulent OVERFLOW and CFL�D results yields
the drag polars depicted in Figure ��� Once the e�ect
of transition is taken into consideration� the numer�
ically predicted results lie within the scatter of the
experimental data�
If the cruise point is reviewed� the drag predictions

with the correction of Eqn ��� become�

CD overflow corrected � ��������

CD cfl�d�v� corrected � �����
�� ���

Comparing Eqns ��� with Eqn ��� shows only a 
�
di�erence in drag levels between CFD and experi�
ment�
During the DPW� Schwamborn and Sutcli�e pre�

sented a result using the DLR�TAU code which also
addressed this CFD�to�Test di�erence� Their presen�
tation is available on the DPW website �
�� On page
�� the data labeled Case � and Transition indicate
that at CL � ���� the correction is�

CD shift����� � 
� counts� ���

Eqns ��� � ��� are very consistent with each other
and are independent estimates of the e�ects on drag
of the laminar runs vs� fully�turbulent �ows�

Figure �� illustrates the drag�rise curves as pre�
dicted by the OVERFLOW solutions� From bottom�
to�top� the four curves of this �gure correspond to
CL � ���� ��
� ���� and ��	� respectively� Also in�
cluded in this �gure is a cross�plot curve� depicted by
the dotted line� which illustrates the drag�divergence
Mach number for the DLR�F
� The de�nition of
Mdd is taken to occur when the drag�rise slope is
dCD�dM � ����� Using these results� the drag�
divergence boundary is determined and is shown in
Figure �
�
The above de�nition of Mdd is motivated par�

tially by the Breguet�Range Eqn �
�� and by eco�
nomic forces �related to block times� that push the
operating Mach number upward towards the ���
Long�Range�Cruise �LRC� point� From Figure �
� it
appears that the DLR�F
 wing is capable of cruis�
ing in excess of M � ����� at the lifting condi�
tion of CL � ���� However� these estimates have
all been made at a wind�tunnel Reynolds number�
rather than at �ight�

	 Conclusions

The importance of drag prediction within an aircraft
design environment is reviewed� A seven�year ret�
rospective of collaborations is given which illustrates
some of the steps taken by the authors and colleagues
in pursuit of accurate drag predictions� The suc�
cesses of this body of work have had a signi�cant
impact on the manner in which all�new aircraft de�
signs are approached�
The DLR�F
 wing�body con�guration has been

analyzed by OVERFLOW and CFL�D using an over�
set mesh� This study focused on the prediction of
drag as a function of lift and Mach number for a
wind�tunnel Reynolds number of �M based on ref�
erence chord� For pre�bu�et conditions� results pre�
sented herein show that the numerical drag predic�
tions are within 
� of the averaged wind�tunnel
data� and the OVERFLOW and CFL�D drag pre�
dictions are within 
��� of each other� This level of
uncertainty is comparable to that of the wind�tunnel
data itself�

Comprehensive sets of OVERFLOW simulations
were independently performed by several users� on
a variety of computational platforms� These solu�
tions spanned 
� Mach numbers from ��� to �����
By coincidence� most of these solutions used cen�
tral di�erencing� scalar dissipation and the Spalart�
Allmaras turbulence model� However� a variety of
parallel computational platforms were used� a mix�
ture of single and double precision simulations were
performed� and slightly di�erent versions of OVER�
FLOW were applied� It is good to say that the vari�
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ation of these results are negligible� In addition� a
few computations were performed with Roe upwind�
ing� The di�erence in drag levels between the two
di�erencing stencils is on the order of 
��
The Drag Prediction Workshop called for the CFD

calculations to be performed fully turbulent� The
available wind�tunnel data� however� was tripped at
��
�� on the wing upper surface and ��� on the
lower surface� Corrections for the CFD�to�Test dif�
ferences were estimated using FLO��� running semi�
complete polars for both �ows� The study derived a
correction of about 
� counts at the design point�
This is comparable to a similar and independent
study based on the DLR�TAU code� Drag polars
based on OVERFLOW were constructed with the
CFD�to�Test corrections and compared with wind�
tunnel test data� These comparisons show that the
predicted polars fall within the scatter band of the
test data� at least for pre�bu�et conditions�
Four drag�rise curves were constructed from the

OVERFLOW solutions� Using a slope de�nition for
drag�divergence Mach number� the Mdd boundary
for the DLR�F
 wing�body was constructed�
In future workshops� a grid�resolution study

should be included by providing a series of
parametrically�consistent meshes of varying resolu�
tion� Post�processing the results from such a se�
quence using Richardson extrapolation will provide
further insight into the resolution required for a de�
sired level of accuracy� at least for the case being
investigated�
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Figure 
� General Layout of the DLR�F
 Model�
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DLR-F4 Airfoils
Airfoil Geometry -- Camber & Thickness Distributions

John Vassberg
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Figure �� Root Airfoil Section of the DLR�F
 Model�
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DLR-F4 Airfoils
Airfoil Geometry -- Camber & Thickness Distributions
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Figure �� Outboard Airfoil Section of the DLR�F
 Model�
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Figure 
� Four Grids De�ning the Wing�Body�Wake Surfaces

Figure �� Wing�Tip Grid
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Figure 	� Collar Grid Volume

Figure �� Collar Grid on Fuselage Near Wing Trailing Edge
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Figure �� Field Grids Near Wing Mid�Chord Location

  Total viscous-surface points:           54445
  Total grid points:                    3727462
  Total non-blanked grid points:        3231377
  Grid points across the TE base              5
  Farfield boundary is a box ~150 chord lengths away.

  grid    id  jd  kd  surfpts  gridpts  %pts  realpts %real  description
     1    49 273  49    13377   655473  17.6   562499  17.4     fuselage
     2   385  65  49    22209  1226225  32.9  1092327  33.8       collar
     3   385  62  49    15934  1169630  31.4  1038606  32.1         wing
     4    25 141  49     2925   172725   4.6   135219   4.2      wingtip
     5   121  22  43        0   114466   3.1    76840   2.4     fuse_box
     6    67  74  46        0   228068   6.1   168408   5.2     wing_box
     7    75  39  55        0   160875   4.3   157468   4.9   global_box
                        -----  -------        -------
             Totals:    54445  3727462        3231377

Figure �� Statistics of the DPW Baseline Overset Grid�
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Figure 
	� Juncture�Flow Separation at Design Point�
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Figure 
�� OVERFLOW Pressure Comparisons at Design Point�
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Figure 
�� OVERFLOW and CFL�D Pressure Comparisons at � � ���
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Figure ��� Transition Strips on DLR�F
 Wing�Body Model�
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